hallo Petze,
ne also die ganzen Sachen gehen schon vom Ursprung los.
r dreht sich immer um die z-achse im normalfall, (wenn man die zyl.-koord benutzt) mit dem Winkel phi.
bei einem normalen Koordinatensystem beginnt ja x,y,z auch vom Ursprung.
so und um den ganzen Kreisbereich vom Bohrer zu überdecken musste r von 0 bis cos(phi) integrierien.
Deine Variante würde ja vom Mittelpunkt des Bohrkreises ausgehen.
Nur dort weiss ich nicht was man da machen müsste.Sicherlich ne Hauptachsentransformation.
Fakt ist die ganzen Flächen und Körper, die uns in den Übungen vorgelgt werden und in der Regel auch so sind, sind alle vom Usprung des x,y,z Koordinatensystems beschrieben.
so es gibt 2 Varianten daß r=1*cos(phi) sein muss.
entweder man siehts das über geometrie(satz des thales und dreicksbeziehung)
oder du beschreibst mal die lage des projezierten Bohrkreises:
also (x-1/2)^2+y^2=(1/2)^2 dort tust du nun die zylinderkoordinaten einsetzen und dann daraus r errechnen.
Prinzipiel kann man sagen: Man holt den Radius(bei zylinderkoordinaten) aus der Funktion in der x,y ebene, welche
die obere Integrationsgrenze für Radius darstellt.
in diesem fall war es die kreisifunktion des bohrkreises.
also radius läuft von 0 bis cos(phi)
aber du kannst auch mal die aufgabe im Ü2 heft Nr. 21.5 anschauen.
selbe aufgabentyp nur mit ner kugel als begrenzung.
Der Radius bei Zylinderkoordinaten lauft IMMER in der ebene als normalfall in der x,y ebene wenn der zylinder ganz normal in z richtung wächst.
Der Radius läuft bei Zylinderkoordinaten NIE irgendwie im Raum herum, Nur in einer Ebene.
weil zylinderkoordinaten: x=r*cos(phi)
y=r*sin(phi)
z=z
hier gibts eben kein radius in der z komponente, nur in der x, y kompente.
was eben zeigt das sich der radius nur in der ebene bewegt.
man kann sich das so vorstellen wie als wenn man in einem gläsernen Turm wäre.
man ist im erdgeschoss also z=0, dann dreht man sich um die eigene Achse mit dem winkel phi, und dein sehstrahl des auges ist der radius.Da du aber eine Halskrause trägst wo "Zylinderkoordinaten" draufsteht ist es dir nicht möglcih deinen kopf zu neigen(nach oben oder unten) also hast nur freiheitsgrad 2 (also winkel phi und sehstrahllänge des auges, der ja objekte in der umgebung erfassen kann die nah oder weit weg stehen)
jetzt willst du aber schauen was in der nächsten ebene für einen umsicht hast. also fährst du mitm fahrstull eine etage hoch und bist bei z=1. dann guckst du dort was du alles siehts und so weiter , bis du beim letzten stockwerk(ober grenze von z angekomemn bist).
stell dir nun mal vor du stehst im kegel von der klausur genau in der z-achse denn weiter darfst du nicht gehen, nur in der z-achse stehen. und vor dir steht so ein zylindrischer körper.der zylinder ist nun mal durchsichtig so das du bis zur hinteren zylinderwand schauen kannst.im zylinder befinden sich nun kleien wüfelchen, die den zylinder ausfüllen.
jetzt kommt jemand, vielleicht eine Mathematik-Professor, und sagt, zählen sie alles würfel im zylinder!
jetzt kannst du ja mit deinem sehstrahl und deinem drehwinkel jeden würfel fokusieren in der ebene und zählst nacheinander die Würfel zusamemmen.wenn du alle würfel einer etage zusammengezählt hast musst du mit dem fahrstuhl eine etage höher fahren, weil du hast ja die zylinderkoordinaten-Halskrause um und kannst deinen kopf nicht nach oben bewegen.so in der nächsten etage angekommne, zählst du deine würfelanzahl weiter.
du merkst dass, je häher die etage ist, die würfelzahl der ebene abnimmt weil du ja im kegel bist und da wirds ja nach oben hin eng.
ja und irgnedwann biste fertig und der Prof. sagt dann:"Fein, jetzt haben Sie das Volumen des Schnittkörpers(kegel/zylinder) ermittelt"
ja so läuft das ab bei diesen integrieren mit zylinderkoordinaten, alles vom ursprung bzw. radius von der z-achse ausgehend.
ich hab nochmal dein integral gebildet un bin auf dein ergebnis von pi*h /6 gekommen, was halt nicht stimmt.weil wie gesagt der radius dreht sich immer um die z-achse und nicht um eine andere punkt oder achse.
und wenn du dir mal den sehstrahl in der x,y ebene aufmalst mit dem winkel für irgendeine position, dann siehst das dein sehstrahl immer maximal cos(phi) (hier in der aufgabe) lang ist.
achso und drehen brauchst du dich ja nur von -pi/2 bis +pi/2, weil woanders gibts keien würfelchen.
man kann