Bombentrichter
Ne, also ich krieg für 1 a) exakt 2 raus ... und das sagt auch der Rechner. Ich hab demzufolge dort alle Antworten als richtig angekreuzt. Zur 1 b) Da haste schon Recht, dass es nur 2 sein kann. Das ist ja auch relativ einfach festzustellen. Die Preisfrage ist aber, ob überhaupt eine Antwort richtig ist (es steht nirgends, dass immer eine richtig sein muss). Weil es steht ja eindeutig dort, dass n aus dem reellen Zahlenbereich sein kann. Die Potenzreihendefinition von Polynomen habe ich auch schon gesehen. Die Def. wird aber in manchen Quellen auch ohne Potenzreihen gemacht. Zusammengefasst: Ich finde keine Stelle in der Literatur bzw. im Internet, die mir verbietet, ein Polynom mit nichtganzzahligen Exponenten zu benutzen.
@pegaso:zu der 4a) ich bin der meinung die z2 stimmt nich weil du ja eine (3,3) Matrix mit ner (3,2) Matrix mutiplizierst und dann kommt ja ne (3,2) Matrix rausfolglich kann man daraus nich die determinante bilden...oder lieg ich da falschmfg
Nochmal zur 2c):Nachdem ich heute in der Vorlesung bissel stutzig geworden bin, hab ichs nochmal genau aufgeschrieben. Das uneigentliche Integral (Nummer 3) scheint doch zu existieren, da sich die beiden lns aufgrund der Koeffizienten bei der PBZ im Unendlichen aufheben. Das 1. Integral existiert aber trotzdem nicht. Im Prinzip hätte mans ja auch über ein Majorantenkriterium machen können. Also Schlussfolgerung: nicht zu voreilig Schlüsse ziehen, lieber mal durchrechnen ... die Zeit dazu is ja da bei 90 min
das uneigentl. integral existiert wenn der grad des nenners über dem des zählers ist, wobei der nenner min. vom ersten grad sein muss.also dürfte es nicht existieren.in der vorlesung heute hat grossm mit einem zähler vom wert 1 gerechnet.nenner war höheren grades.folglich existiere das integral. ich hab mal ne frage zu 5d) für meine begriffe entsteht da ne 2x2 matrix.können dann überhaupt die gegebenen vektoren die eigenvektoren sein? bzw 3 eigenwerte kann es nicht haben.oder versemmel ich gerad die dimensionen der matrix? zu 1a) ich hab beide in die exp. schreibweise gebracht, das quadrat mit rein gezogen und dann aufgelöst.nur kommt das bei mir nicht hin.ich komm auf nen [latex]$e^i \cdot \frac{\phi}{12} + w_1$[/latex] was sicher nicht richtig ist.kann mal jemand bitte seinen weg posten?
ich hab mich an den schei** komplexen festgebissen und seh meinen fehler nicht mehr bei der a) ich kriegs einfach net hin dieses sinnlose z mit exp. schreibweise auszurechnen für w1^2 hab ich: Wurzel(2)*e^i(phi/6)für w2 hab ich: Wurzel(2)*e^i(phi/4) schön und gut hab ich ne gleiche basis müsste man exponenten subtrahieren aber da steht da 1/12 phi.und 1/12 kriegt man doch gar net so einfach wieder zurück gerechnet.zumindest steht kein winkelwert im binomi.ich seh meinen fehler net mehr.wenn ich ihn weiss greif ich mir sicher an den kopf. dann noch ne allgmeine frage: warum konvergiert z.b. 2/(2*((k-1)^3/2)) aber z.b. 1/2 * 1/ ((k)^1/2) divergiert? oder hab ich mir was falsch notiert?