Bombentrichter
ja aber ist nur ausm gedächtnis, also bekomme auch nicht mehr alles zusammen, was ich hatte6.b) 1.Fall: a=0; b=0; µ=beliebig 2.Fall: a=belibeig; b=0; µ= (k²pi²)/(4l²)
ich hab bei 2b was anderes: x=(cos t,sin t) 0so in etwa hatte ich es glaube auch...
Da nicht die die Nullfunktion rauskommen sollte (laut Aufgabenstellung) ist nur dein 2. Fall richtig a=belibeig; b=0; µ= (k²pi²)/(4l²).
a war bei mir nicht beliebig sondern musste ungleich 0 sein da es ja ansonsten die Nullfunktion gewesen wäre also a€R aber a ungleich 0 ^^. so hab ichs..
Bei 5b) u=xy+C(x,y)
Ich weiß zwar nicht mehr, was die Aufgabe war, aber kommt dir das Ergebnis nicht komisch vor? Wenn in C(x,y) jetzt unter anderem ein "-xy" vorkommt, könnte u wieder jede beliebige Funktion sein.GrüßeP.S. Was ist eigentlich der Sinn dahinter, sich jetzt nach der Prüfung noch gegenseitig fertig zu machen? Ihr könnt jetzt eh nichts mehr dran ändern und übermorgen steht der nächste Knaller an. Konzentriert euch lieber darauf.In diesem Sinne, gute Nacht.
Bei 6a) hab ich für T(t)=e^(k*t)*C und für X(x) ne komplette Fallunterscheidung gemacht sprich k>0,<0,=0 --> hatte aber praktisch T'(t)/T(t)=X''(x)/4*X(x)=k definiert das hatte es ein bissl verkompliziert bei der k<0 Betrachtung hehe ^^.
Ansonsten kam mir nen Großteil hier sehr bekannt vor 12 Punkte waren bei der Klausur aufjedenfall kein Ding der unmöglichkeit .
Ehm bei 6a) stand doch in der Aufgabenstellung wir sollten nur die DGL´s aufstellen!Wieso zum Henker also habt ihr alle die Dinger gelöst?
Tjo weil ich nicht richtig lesen kann , najo hab mich sowieso gewundert warum die Aufgabe weniger Punkte als die darauffolgende gab.Wahrscheinlich habe ich in dem Augenblick einfach gedacht "So einfach kann er das doch ned wollen Oo, das ist ja simpelstestens Einsetzen".Ich sagmal "It's a feature ".Emm richtig lesen kann ich also offensichtlich auch nicht :-) Aber um sie zu lösen musste man sie auch aufstellen, als sollte es eigentlich trotzdem punkte geben. Normalerweise sollte derjenige der es kontrolliert nachdem sie aufgestellt wurden garni mehr weiter lesen So long und gute Nacht Edit: Ach Klaus:a).......... a .......x<1 F= .......-e^(-x+1).. x>=1glaub das war ned ganz richtig --> sondern 1-e^(-x+1) , da -e^(-x+1) sich ja bei x->unendlich der 0 annähert. Es war ja das Integral von [1;unendlich] --> 1 eingesetzt ergibt -e^0 also -(-1).Och nö! Stimmt beim integrieren nicht dran gedacht, dass da ja auch noch ne konstante folgen könnte. Tja hat der "Fischi" doch paar Tricks eingebaut. Naja was solls, zum Bestehen sollte es aber definitiv reichen.
Aso und zu dem C(x,y):Nö es ist doch nicht gesagt das die Nullfunktion keine PDGL sein darf und außerdem, wenn du nun anstatt C(x,y) C(x)+C(y) schreibst ändert das auch nicht --> es kann ja immer noch das gleiche Problem auftreten beispielsweise bei u=2x+y+C(x)+C(y).Das C(x,y) sagt ja nur das ein x und ein y vorkommt aber nicht wie sie in Verbindung stehen, ob nun multipliziert, addiert, ..., ich habe also lediglich die 2 Konstanten "zusammengefasst".Zumindest hatte es so mein Übungsleiter (Mathestudent im 10. Semester) immer C(x,y) und nie C(x)+-*/C(x) geschrieben
C(x,y) = -x*y + 77x^9 - 10e^y + wurzel(x+y)
1. Wenn du C(x) und C(y) hast, wär das jeweils die selbe Funktion. Also wenn dann C(x) und D(y)2. Mit C(x) + D(y) kannst du kein x*y ausgleichen!3. x*y + C(x,y) würde bei der allgemeinen Lösung heißen, du hast eine beliebige Funktion von x und y, addiert zu x*y. Die beliebige Funktion könnte somit auchCode: [Select]C(x,y) = -x*y + 77x^9 - 10e^y + wurzel(x+y)sein. Dabei fällt dann das x*y raus und deine allgemeine Lösung ist gleich einer völlig beliebigen Funktion. D.h. dass du das x*y auch gleich weglassen könntest.Grüße