Bombentrichter
\begin{equation}c=\sqrt{a^2+b^2}\qquad oder \qquad a^{2}+b^{2}=c^{2}\end{equation}
$\forall a,b,c \in \mathbf{R^+}$
\begin{equation}\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\cdot\frac{\mathrm{d}u}{\mathrm{d}x}\end{equation}
\begin{equation}\vec F_{Res}=\sum_{i=1}^{n}\vec{F_i}\end{equation}
\begin{eqnarray}\lefteqn{ \nu_k=\frac{\partial U}{\partial F_k}=\sum_{i=1}^{n} \int\limits_{(l_i)}{} \biggl[ \frac{M_{bxi}}{(EI_{xx})_i}\frac{\partial M_{bxi}}{\partial F_k}+\frac{M_{byi}}{(EI_{yy})_i}\frac{\partial M_{byi}}{\partial F_k}+\frac{M_{ti}}{(GI_{t})_i}\frac{\partial M_{ti}}{\partial F_k}+{} }\nonumber\\& &{}+\frac{F_{Li}}{(EA)_i}\frac{\partial F_{Li}}{\partial F_k}+\kappa_{xi}\frac{F_{Qxi}}{(GA)_i}\frac{\partial F_{Qxi}}{\partial F_k}+\kappa_{yi}\frac{F_{Qyi}}{(GA)_i}\frac{\partial F_{Qyi}}{\partial F_k} \biggr] ds_i\end{eqnarray}
\begin{equation}\mathrm{\Psi} = \left[\begin{array}{ccc}\sigma_{xx} & \tau_{xy} & \tau_{xz} \\\tau_{yx} & \sigma_{yy} & \tau_{yz} \\\tau_{zx} & \tau_{zy} & \sigma_{zz} \\\end{array}\right]\end{equation}
\begin{equation}f_X=\frac{ { M \choose k} { N-M \choose n-k} } { {N \choose n} }\end{equation}